The Spectrometer/Telescope for Imaging X-rays (STIX)

From stix
Revision as of 21:51, 4 December 2021 by Hualin (talk | contribs)
Jump to: navigation, search

The Spectrometer/Telescope for Imaging X-rays (STIX)

The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter is a hard X-ray imaging spectrometer covering the energy range from 4 to 150 keV. STIX observes hard X-ray bremsstrahlung emissions from solar flares and therefore provides diagnostics of the hottest ('10 MK) flare plasma while quantifying the location, spectrum, and energy content of flare-accelerated nonthermal electrons.

To accomplish this, STIX applies an indirect bigrid Fourier imaging technique using a set of tungsten grids (at pitches from 0.038 to 1 mm) in front of 32 coarsely pixelated CdTe detectors to provide information on angular scales from 7 to 180 arcsec with 1 keV energy resolution (at 6 keV). The imaging concept of STIX has intrinsically low telemetry requirements and it is therefore well-suited to the limited resources available to the Solar Orbiter payload. To further reduce the downlinked data volume, STIX data are binned on board into 32 selectable energy bins and dynamically-adjusted time bins with a typical duration of 1 second during flares.

Through hard X-ray diagnostics, STIX provides critical information for understanding the acceleration of electrons at the Sun and their transport into interplanetary space and for determining the magnetic connection of Solar Orbiter back to the Sun. In this way, STIX serves to link Solar Orbiter’s remote and in-situ measurements. Read more ...

STIX Raw data levels

  • L0 data compression
raw data, no compression of photonic counts.
  • L1 data compression:
Trigger Accumulators compressed to 1 octet.
Pixel counts compressed to 1 octet.
  • L2 data compression:
Trigger accumulators compressed to 1 octet
Combined pixel counts compressed to 1 octet.
  • L3 data compression:
Trigger accumulators compressed to 1 octet
Total pixel counts compressed to 1 octet.
  • Spectrograms

- To preserve resolution of images from a flare, and keep modest TM load, spatially spacially integrated data products, spectrograms, are calculated.

  • Aspect

Aspect bulk data